複数性能を扱う車体構造最適化手法の開発 Development of Multidisciplinary Design Optimization for Body Structure

小 平 剛 央^{*1} 小 池 真 人^{*2} 天 野 浩 平^{*3} Takehisa Kohira Masato Koike Kohei Amano

要 約

論文・解説

18

車体部品の板厚最適化解析手法は、衝突や剛性等の車両性能を保持した上で、最軽量な部品の板厚仕様を予 測することができ、合理的な構造を求めるうえで有望な技術である。しかし、非線形性の強い衝突性能などを 扱う場合、実用的な計算時間内で計算結果の精度を確保することは難しい。そこで、最適化計算の中心プロセ スである近似モデルに着目して、その実験サンプリング手法および近似モデル作成手法を工夫し、非線形性の 強い複数の衝突性能と剛性、NVH等を同時に扱える手法を構築した。

Summary

Gauge optimization technology which can predict the lightest gauge combination of parts while maintaining crashworthiness and stiffness etc., has a potential to pursue an optimal structure. However it is difficult to maintain calculation accuracy during practical duration of analysis in the case of crashworthiness etc. which has a strong non-linearity. In this paper, data sampling and approximation model have been improved focusing on main process of optimization analysis, and design optimization technology for body structure subjected to stiffness, NVH and crashworthiness with strong non-linearity has been established.

1. はじめに

地球温暖化に対する世界各国での自動車CO₂排出量の規 制強化を受けて,自動車の質量低減,とりわけ車体に要求 される軽量化目標は年々高まっている。一方で,衝突安全 性能などの自動車の性能も,市場から高いレベルで求めら れており,軽量化と自動車の性能の両立は困難になりつつ ある。

これら自動車の軽量化や高性能化の問題の解決手段とし て、CAE(Computer Aided Engineering)技術のひとつで ある構造最適化技術や、その高度な活用の研究が進んでい る⁽¹⁾。例えば、車体の剛性、あるいは衝突性能を低下させ ることなく、より軽量な構造を導出するなど⁽²⁾⁽³⁾、その実 用化が進んでいる。更に、より多くの性能を同時に扱うこ とを狙った複数性能最適化技術(Multidisciplinary Design Optimization: MDO)⁽⁴⁾⁽⁵⁾の研究も進んでいる。しかし、自 動車の車体の場合,対象とする性能が線形挙動を示す剛性 から,非線形挙動を示す衝突性能まで様々であり,最適化 計算過程の途中で作成する近似モデルの精度の確保が大き な課題となっている。

そこで本研究では、まず車体構造に要求される剛性(静 剛性・動剛性)、振動特性、および衝突性能(前面衝突・ 側面衝突・後面衝突)を扱うことができる板厚・材質最適 化の解析システムを開発⁽⁶⁾⁷⁾し、次に、車体構造の板厚最 適化への適用を通して、非線形性の強い衝突現象の近似モ デルの精度確保を行った。更に、実車体構造モデルを用い て複数の性能目標を満足しつつ、質量を低減する板厚・材 質最適化機能を確認した。

2. 最適化解析システムの開発

2.1 複数性能最適化技術

複数性能最適化とは,複数の設計領域を効率よく最適化 する解析技術のことで,式(2.1)~(2.3)で定式化され る⁽⁴⁾。

最小化
$$f(\mathbf{x},\mathbf{u}(\mathbf{x}))$$
 (2.1)

制約条件 $g(x,u(x)) \ge 0$ (2.2)

$$h(x,u(x)) = 0$$
 (2.3)

ここで、
$$u(x)$$
は、式 (2.4) より求められる。

$$A(x,u(x)) = \begin{pmatrix} A_1(x,u_1(x),\cdots u_n(x)) \\ \vdots \\ A_n(x,u_n(x),\cdots u_n(x)) \end{pmatrix} = 0$$
(2.4)

式(2.1)は目的関数,式(2.2)は不等式制約条件,式 (2.3)は等式制約条件である。また,xは設計変数,u(x) は式(2.4)の複数性能解析で求められる状態変数,nは性 能の数である。本解析技術の特徴は,対象とする複数の性 能を状態変数化し,目的関数と制約条件内に定義できる点 であり,車体の解析においては,剛性や衝突などの複数の 性能と質量最小化を両立する構造の導出を効率的に行うこ とができる。

2.2 最適化解析システム

式(2.1)~(2.3)に基づいて,目的関数を車体質量の 最小化,設計変数を車体の各部材の板厚・材質とし,制約 条件として,車体の線形・非線形な複数の性能を扱うこと が可能な,実験計画法と近似モデルを組み合わせた複数性 能の板厚・材質最適化解析システムを作成した。Fig.1に その計算プロセスを示す。

実験計画法(Design of Experiments: DOE)は,設計 変数の変動が性能や質量に及ぼす影響を効率よく解析する ためのデータサンプリング手法であり,近似モデル (Approximation Model)は,性能解析予測を近似関数に置 き換えることで解析時間を削減できる手法である。どちら も最適化解析では近年,一般的に用いられている。実験計 画法,近似モデル,最適化手法の具体的な手法は以下であ る。

実験計画法: ラテン超方格法[®] 近似モデル:応答曲面法 最適化手法:遺伝的アルゴリズム

ラテン超方格法は、設計変数を連続値として扱いなが ら、実験点を最適設計空間内に均一に分布させ、高次の効 果を捉えることができるので、非線形性の強い衝突現象の 実験計画として適切であると考える。なお、材質を設計変 数にする場合は,材質の強度特性を変数として扱う。応答 曲面法(Response Surface Method:RSM)は,性能解析 予測を多項式関数で表現する手法である。

図中のStatistics Analysisでは、部材の性能寄与を把握 するためのパレート分析、回帰分析などを行う。また最適 解析の精度確認のため、図中のError(最適解誤差)で判 断する。

Fig.1 Multidisciplinary Design Optimization Process

3. 近似モデルの高精度化

一般に,非線形性の強い衝突現象を含む複数性能最適化 では,近似モデルの精度が低下する。Fig.2はその概念を 示す。この精度を高めるためには,通常,実験サンプルの 数を増やせば良く,例えば,2次の応答曲面を高精度で計 算するために必要な実験サンプル数Sは,式(3.1)で見 積もられる⁽⁴⁾。

$$S = \frac{(j+1)(j+2)}{2}$$
(3.1)

ここでjは設計変数の数であるが,自動車の車体構造の ように設計変数が多い場合は,実験サンプルの数が膨大に なり,衝突解析は多大な計算時間が必要なことから実用的 でない。そこで,商品開発への適用を念頭に,実用レベル まで実験サンプル数を減らしながら,近似モデルの精度の 確保を行った。

Fig.2 Schematic of Accuracy of Approximation Model

3.1 実験サンプル数の削減

実験サンプル数の削減は、前述のラテン超方格法の特徴 を活かしながら行った。ラテン超方格法の実験サンプル数 は、j+1以上であれば、任意の実験サンプル数を設定する ことができ、そのサンプル数が水準数となる。そこで、設 計変数の探査範囲を考慮しながら、各実験の板厚が連続値 として設計空間内に均一に分布する水準数を見積もり、実 験サンプル数を決定し実験解析を行った。次に、その実験 結果から、各設計変数の板厚変化に対する全制約条件(全 性能)のパレート分析を応用した寄与解析を行い、寄与の 低い設計変数を無視することで、少ない実験サンプル数で 2次の応答曲面の作成を可能とした。

3.2 非線形性に基づく精度向上

次に衝突現象の違いに着目して,近似モデルの高精度化 に取り組んだ。衝突現象は,側面衝突のように曲げ座屈現 象(本論文では,弱非線形性で定義)が主体的なものと, 前面衝突や後面衝突のように主に曲げ座屈と軸圧縮現象 (強非線形性で定義)が複合しているものがある。この非 線形性の強弱に分けて,精度悪化の要因を分析し,改善策 を講じた。Table 1に非線形性の違いに応じた改善ステッ プを示す。

Table 1 Process of Accuracy Improvement

	STEP1	STEP2		
Crashworthiness	Side Impact	Frontal Impact	Rear Impact	
Mode	flexural buckling	flexural buckling and axial compressior		
Nonlinearity	Weak	Strong		

(1) 弱非線形性能に対する高精度化 (STEP1)

弱非線形現象である側面衝突の曲げ座屈に対する精度悪 化要因を,側面衝突だけを制約条件とする最適化解析結果 を用いて分析した。最適化解析に用いた詳細モデルと解析 条件をFig.3に示す。

Fig.3 FE Mo	odel and Analysis Conditions
板厚変更幅:	$0.6 \leq t_j \leq 3.6 \ (j=1,2,,37)$
設計変数:	車体骨格部品 37 変数
制約条件:	側面衝突: 生存空間量≧目標値
日的周毅:	領重取小化

最適化解析結果をTable 2に示す。表中の①~⑤は、車

体の各計測点における生存空間量, "True Value"は最適 板厚仕様における解析値, "Predicted Value"は応答曲面 を用いた最適計算での予測値, "Error"はTrue Valueと Predicted Valueの誤差である。

5つの計測点全てで誤差が100%を越えており,予測精 度が低いことが分かった。この誤差を分析した結果の概念 をFig.4に示す。この分析より,最適解が実験計画法で設 定した設計空間内にある場合の誤差(図中のType A)と, 最適解が実験計画法で設定した設計空間外(図中Type B) にある場合の誤差に分けられることが分かった。

Type Aの誤差の大きさを評価するため、応答曲面を用いて計算した性能とFEMで計算した性能の相関を調べた。 その結果をFig.5に示す。これよりR2係数は0.9以上と高く、応答曲面の予測精度は高いことが分かった。

Table 2 Accuracy of Response Surface Method (RSM)

		True Value	Predicted Value	Error
		(FEM)	(RSM)	[%]
Weight		82	64	-23%
	1	33	142	328%
Side	2	44	126	186%
	3	59	151	158%
	4	68	135	100%
	5	81	169	109%

Fig.4 Factor of Low Accuracy of RSM

次に, Type Bでの予測精度を調べた。設計空間外での 調査のため, まず設計空間内の基準となる初期板厚仕様の マツダ技報

性能を応答曲面を用いて予測し,FEMで求めた性能と比較した。その結果をTable 3に示す。Table 2より改善傾向にあるが,初期仕様の性能予測においても応答曲面の精度が悪いことが分かった。そこで,各板厚仕様の実験サンプルの質量分布を調べた。その結果をFig.6に示す。初期板厚仕様での質量(図中点線部分)を超える実験点は多くあるが,それ以下の実験点が少ないことが分かり,実験計画法での最適解近傍空間の実験組み合わせが,ほとんどないことが精度悪化の主要因と考えられる。

Table 3 Acc	curacy Verific	cation of In	itial Thickness
-------------	----------------	--------------	-----------------

		True Value	Predicted Value	Error
		(FEM)	(RSM)	[%]
Weight		104	94	-9%
Side Impact	1	96	74	-23%
	2	89	69	-23%
	3	90	93	4%
	4	125	121	-3%
	5	89	173	94%

Fig.6 Mass Distribution of DOE

Fig.7 Improvement of Mass Distribution

この対策として,実験計画法の板厚水準の振り方を,絶 対値(0.6≤tj≤3.6)から初期仕様に対する相対値(例え ば、±30%)に変更し、実験組み合わせの質量が初期仕 様の質量の近傍に均一に分布するように変更した。Fig.7 に変更後の質量分布、Table 4にその精度検証結果を示す。 これらより、変更後の質量は最適解近傍にも分布し、近似 モデルの精度が改善したことを確認した。

Table 4 Verification of Accuracy Improvement

		True Value	Predicted Value	Error
		(FEM)	(RSM)	[%]
Weight		107	107	0%
č	1	101	105	4%
	2	97	110	13%
Slue	3	114	116	2%
impact	4	147	157	7%
	5	190	190	0%

(2) 強非線形性能に対する高精度化 (STEP2)

強非線形現象である前面オフセット衝突と後面衝突に対 しては、側面衝突に前面オフセット衝突と後面衝突を加え た制約条件で精度悪化要因の分析を行った。

目的関数:質量最小化 制約条件: 前面オフセット衝突:トーボード後退量≤目標値 側面衝突:生存空間量≥目標値 後面衝突:タンクエリア変形量≤目標値 設計変数:車体骨格部品37変数 板厚変更幅:-30%≤tj≤+20% (j=1, 2, …, 37)

精度検証結果をTable 5に示す。表中の①~⑥は、車体の各計測点におけるトーボード後退量、生存空間量、タンクエリア変形量である。

この結果から,非線形の衝突現象の中でも特に前面オフ セット衝突の精度が低いことが分かり,3.2(1)項と同様に, 精度悪化要因の分析を行った。この場合,Fig.4のType A に相当する応答曲面とFEMの相関R2係数は0.4と低いこと が分かった。その結果をFig.8に示す。

Fig.9には前面オフセット衝突の,解析途中の状態を示 す。この図より,前面オフセット衝突は軸圧縮や曲げ座屈 が複合的に発生する衝突現象であるため、2次の応答曲面 ではその現象を十分にモデル化できていないと考えた。非 線形現象の近似モデルとしては,ニューラルネットワーク の一種のRBF (Radial Basis Functions)[®]が提案されてお り,この手法の適用を試みた。その結果,弱非線形と同様 に近似モデルの精度が改善したことを確認した(Table 6)。

		True Value (FEM)	Predicted Value (RSM)	Error [%]
Weight		98	98	0%
	1	42	29	-31%
	2	6	20	221%
Frontal	3	33	12	-64%
Impact	4	14	16	9%
	5	23	22	-6%
	6	24	31	31%
	1	110	110	0%
	2	105	106	2%
Side	3	108	111	3%
Impact	4	123	125	2%
	5	159	161	1%
	6	208	207	0%
Deer	1	62	52	-16%
Kear	2	140	138	-2%
impact	3	165	160	-3%

Table 5 Accuracy of RSM

Predicted Value from RSM Fig.8 Correlation of Frontal Offset Impact

4. 最適化解析システムの機能検証

前述で開発した最適化解析システムを,量産開発の車体 上部モデルの板厚・材質最適化検討に適用し,その機能と 有効性を検証した。最適化条件を以下に示す。

目的関数:質量最小化

制約条件:車体ねじり剛性≥目標値 低周波振動数≥目標値 リヤダンパトップ動剛性≥目標値 側面衝突:車体進入量≤目標値 ルーフクラッシュ:耐荷重≥目標値 設計変数:NVH系67部品の板厚 衝突系39部品の板厚と材質

Fig.9 Frontal Offset Impact

Table 6 Verification of Accuracy Improvement by RBF

		True Value	Predicted Value	Error
		(FEM)	(RSM, RBF)	[%]
Weight		101	101	0%
	1	30	30	-2%
	2	7	8	19%
Frontal	3	27	30	11%
Impact	4	13	14	6%
	5	20	25	21%
	6	21	23	11%
	1	108	111	3%
	2	103	105	3%
Side	3	106	110	4%
Impact	4	122	124	2%
	5	159	163	3%
	6	209	208	0%
Rear Impact	1	60	54	-10%
	2	137	140	2%
	3	161	159	-2%

板厚変更幅:-20%≦tj≦+20% (j=1, 2, …, 67) 材質変更幅:440, 590, 780, 980MPa級ハイテン材 近似モデル:2次の応答曲面法 最適化手法:遺伝的アルゴリズム

最適化結果をTable 7に示す。近似モデルの予測精度 は±5%未満と高い水準で,実用上問題のないレベルであ る。また,最適解析前は得ることができなかった,全ての 性能目標を満足しつつ,3.4%の軽量化効果を有する仕様 を導き出し,有効性を確認することができた。

5. まとめ

最適化解析の近似モデルに着目して,実験サンプリング 手法と非線形現象の分析手法に以下の工夫を加えて,車体 で問題となる剛性,振動,衝突現象を扱える最適化解析シ ステムを開発した。

- ・実験計画法の実験組み合わせは、目的関数に応じた最適 探査範囲を考慮した空間を定義
- ・設計変数パラメータの水準は,初期値からの相対値で定 義
- ・非線形の強い現象の近似関数モデルの算出法として、 RBFを適用

本システムを商品開発の車体上部構造の軽量化検討に適 用したところ,性能目標を満足しつつ,軽量化の可能性を 示す結果が得られ,本システムが車体構造の軽量化検討に 有用であることを確認した。今後,車両の更なる軽量構造 の開発に,今回開発した複数性能を扱える最適化解析シス テムを応用展開していく。

		Target	Optimized Results	Error [%]
Weight		Minimum	-3.4%	0.0%
Body Stiffn	iess	≧A	>A	0.1%
Torsion Frequency	,	≧B	>B	0.4%
Bending Frequency		≧C	>C	0.0%
р .	X(RH)	≧D	>D	-0.4%
Dynamic	X(LH)	≧E	>E	-0.3%
Sumness	Y(RH)	≧F	>F	0.5%
of Rear Damper Top	Y(LH)	≧G	>G	0.9%
	Z(RH)	≧H	>H	0.1%
	Z(LH)	\geq	>	-0.8%
Side Impact	1	≦J	<J	1.0%
	2	≦K	<K	-1.7%
	3	≦L	<l< td=""><td>-2.1%</td></l<>	-2.1%
	4	≦M	<m< td=""><td>-3.1%</td></m<>	-3.1%
Roof Crash		≧N	>N	-4.5%

Table 7 Application Result

参考文献

- Donald M. Baskin et al. : A Case Study in Structural Optimization of an Automotive Body in White Design, SAE Technical Paper (2008)
- (2) 玉木善規:構造最適化解析技術を利用したボデー軽量 化検討,自動車技術会学術講演会前刷集,Vol.981, No.9831676, p.197-198 (1998)
- (3) 岡本和之ほか:衝突対象を考慮した車体構造の最適設計,自動車技術会学術講演会前刷集(2002年秋季), No.80-02, p.9-12
- (4) 川面恵司ほか:最適化理論の基礎と応用,2000年初 版,コロナ社, p.171-210
- (5) Nickolas Vlahopoulos (Univ. of Michigan) et al.: Utilization of Response Surface Methodologies in the Multi-discipline Design Optimization of an Aircraft Wing, SAE Technical Paper (2009)
- (6) 小平剛央:複数の衝突性能を扱う車体構造最適化シス テムの開発,2010年自動車技術会秋季大会,No.128-10, p.17-20,自動車技術会(2010)
- (7) 小平剛央:自動車の複合領域最適化における応答曲面の高精度化,第9回最適化シンポジウム,No.10-67,210,日本機械学会(2010)
- (8) 宮田悟志ほか:自動化・最適化プログラムiSIGHTによる区分モンテカルロ法の適用,平成12年度材料力
 学部門講演会講演論文集, No.00-19, p.691-692,日本機械学会(2000)
- (9) 山川宏ほか:最適設計ハンドブック,2003年初版, 朝倉書店, p.160-174, p.197-199

■著 者■

天野浩平

小平剛央